[English] 日本語
Yorodumi
- PDB-8jnf: The cryo-EM structure of the RAD51 filament bound to the nucleosome -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 8jnf
TitleThe cryo-EM structure of the RAD51 filament bound to the nucleosome
Components
  • DNA (153-MER)
  • DNA (156-MER)
  • DNA repair protein RAD51 homolog 1
  • Histone H2A type 1-B/E
  • Histone H2B type 1-J
  • Histone H3.1Histone H3
  • Histone H4
KeywordsDNA BINDING PROTEIN/DNA / Nucleosome / Recombinase / DNA BINDING PROTEIN-DNA complex
Function / homology
Function and homology information


presynaptic intermediate filament cytoskeleton / mitotic recombination-dependent replication fork processing / cellular response to camptothecin / chromosome organization involved in meiotic cell cycle / telomere maintenance via telomere lengthening / DNA recombinase assembly / positive regulation of DNA ligation / double-strand break repair involved in meiotic recombination / nuclear ubiquitin ligase complex / mitotic recombination ...presynaptic intermediate filament cytoskeleton / mitotic recombination-dependent replication fork processing / cellular response to camptothecin / chromosome organization involved in meiotic cell cycle / telomere maintenance via telomere lengthening / DNA recombinase assembly / positive regulation of DNA ligation / double-strand break repair involved in meiotic recombination / nuclear ubiquitin ligase complex / mitotic recombination / DNA strand invasion / cellular response to hydroxyurea / replication-born double-strand break repair via sister chromatid exchange / lateral element / telomere maintenance via recombination / DNA strand exchange activity / regulation of DNA damage checkpoint / Impaired BRCA2 binding to PALB2 / reciprocal meiotic recombination / single-stranded DNA helicase activity / Defective homologous recombination repair (HRR) due to BRCA1 loss of function / Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of BRCA1 binding function / Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of BRCA2/RAD51/RAD51C binding function / Homologous DNA Pairing and Strand Exchange / Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SDSA) / Resolution of D-loop Structures through Holliday Junction Intermediates / ATP-dependent DNA damage sensor activity / HDR through Single Strand Annealing (SSA) / Impaired BRCA2 binding to RAD51 / regulation of double-strand break repair via homologous recombination / nuclear chromosome / replication fork processing / DNA unwinding involved in DNA replication / Transcriptional Regulation by E2F6 / Presynaptic phase of homologous DNA pairing and strand exchange / heterochromatin organization / nucleosomal DNA binding / negative regulation of tumor necrosis factor-mediated signaling pathway / negative regulation of megakaryocyte differentiation / protein localization to CENP-A containing chromatin / ATP-dependent activity, acting on DNA / Chromatin modifying enzymes / Replacement of protamines by nucleosomes in the male pronucleus / interstrand cross-link repair / CENP-A containing nucleosome / epigenetic regulation of gene expression / DNA polymerase binding / Packaging Of Telomere Ends / condensed chromosome / Recognition and association of DNA glycosylase with site containing an affected purine / Cleavage of the damaged purine / Deposition of new CENPA-containing nucleosomes at the centromere / Recognition and association of DNA glycosylase with site containing an affected pyrimidine / Cleavage of the damaged pyrimidine / Inhibition of DNA recombination at telomere / Meiotic synapsis / telomere organization / RNA Polymerase I Promoter Opening / Interleukin-7 signaling / Assembly of the ORC complex at the origin of replication / SUMOylation of chromatin organization proteins / DNA methylation / Condensation of Prophase Chromosomes / ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression / SIRT1 negatively regulates rRNA expression / Chromatin modifications during the maternal to zygotic transition (MZT) / HCMV Late Events / meiotic cell cycle / innate immune response in mucosa / PRC2 methylates histones and DNA / condensed nuclear chromosome / male germ cell nucleus / Defective pyroptosis / HDACs deacetylate histones / cellular response to ionizing radiation / RNA Polymerase I Promoter Escape / lipopolysaccharide binding / Nonhomologous End-Joining (NHEJ) / Transcriptional regulation by small RNAs / regulation of protein phosphorylation / double-strand break repair via homologous recombination / Formation of the beta-catenin:TCF transactivating complex / RUNX1 regulates genes involved in megakaryocyte differentiation and platelet function / Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3 / NoRC negatively regulates rRNA expression / HDR through Homologous Recombination (HRR) / G2/M DNA damage checkpoint / HDMs demethylate histones / B-WICH complex positively regulates rRNA expression / DNA Damage/Telomere Stress Induced Senescence / PML body / Metalloprotease DUBs / PKMTs methylate histone lysines / RMTs methylate histone arginines / Meiotic recombination / Pre-NOTCH Transcription and Translation / Activation of anterior HOX genes in hindbrain development during early embryogenesis / HCMV Early Events / Transcriptional regulation of granulopoiesis / structural constituent of chromatin
Similarity search - Function
DNA recombination/repair protein Rad51 / DNA recombination and repair protein, RecA-like / DNA recombination and repair protein Rad51-like, C-terminal / Rad51 / DNA recombination and repair protein RecA, monomer-monomer interface / RecA family profile 2. / DNA recombination and repair protein RecA-like, ATP-binding domain / RecA family profile 1. / DNA repair Rad51/transcription factor NusA, alpha-helical / Helix-hairpin-helix domain ...DNA recombination/repair protein Rad51 / DNA recombination and repair protein, RecA-like / DNA recombination and repair protein Rad51-like, C-terminal / Rad51 / DNA recombination and repair protein RecA, monomer-monomer interface / RecA family profile 2. / DNA recombination and repair protein RecA-like, ATP-binding domain / RecA family profile 1. / DNA repair Rad51/transcription factor NusA, alpha-helical / Helix-hairpin-helix domain / Histone H2B signature. / Histone H2B / Histone H2B / Histone H2A conserved site / Histone H2A signature. / Histone H2A, C-terminal domain / C-terminus of histone H2A / Histone H2A / Histone 2A / Histone H4, conserved site / Histone H4 signature. / Histone H4 / Histone H4 / CENP-T/Histone H4, histone fold / Centromere kinetochore component CENP-T histone fold / TATA box binding protein associated factor / TATA box binding protein associated factor (TAF), histone-like fold domain / Histone H3 signature 1. / Histone H3 signature 2. / Histone H3 / Histone H3/CENP-A / Histone H2A/H2B/H3 / Core histone H2A/H2B/H3/H4 / Histone-fold / ATPases associated with a variety of cellular activities / AAA+ ATPase domain / P-loop containing nucleoside triphosphate hydrolase
Similarity search - Domain/homology
DNA / DNA (> 10) / DNA (> 100) / Histone H2A type 1-B/E / Histone H2B type 1-J / Histone H4 / Histone H3.1 / DNA repair protein RAD51 homolog 1
Similarity search - Component
Biological speciesHomo sapiens (human)
synthetic construct (others)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 6.91 Å
AuthorsShioi, T. / Hatazawa, S. / Ogasawara, M. / Takizawa, Y. / Kurumizaka, H.
Funding support Japan, 5items
OrganizationGrant numberCountry
Japan Society for the Promotion of Science (JSPS)JP22K06098 Japan
Japan Society for the Promotion of Science (JSPS)JP23H05475 Japan
Japan Agency for Medical Research and Development (AMED)JP23ama121009 Japan
Japan Science and TechnologyJPMJER1901 Japan
Japan Society for the Promotion of Science (JSPS)JP23K14134 Japan
CitationJournal: Nature / Year: 2024
Title: Cryo-EM structures of RAD51 assembled on nucleosomes containing a DSB site.
Authors: Takuro Shioi / Suguru Hatazawa / Eriko Oya / Noriko Hosoya / Wataru Kobayashi / Mitsuo Ogasawara / Takehiko Kobayashi / Yoshimasa Takizawa / Hitoshi Kurumizaka /
Abstract: RAD51 is the central eukaryotic recombinase required for meiotic recombination and mitotic repair of double-strand DNA breaks (DSBs). However, the mechanism by which RAD51 functions at DSB sites in ...RAD51 is the central eukaryotic recombinase required for meiotic recombination and mitotic repair of double-strand DNA breaks (DSBs). However, the mechanism by which RAD51 functions at DSB sites in chromatin has remained elusive. Here we report the cryo-electron microscopy structures of human RAD51-nucleosome complexes, in which RAD51 forms ring and filament conformations. In the ring forms, the N-terminal lobe domains (NLDs) of RAD51 protomers are aligned on the outside of the RAD51 ring, and directly bind to the nucleosomal DNA. The nucleosomal linker DNA that contains the DSB site is recognized by the L1 and L2 loops-active centres that face the central hole of the RAD51 ring. In the filament form, the nucleosomal DNA is peeled by the RAD51 filament extension, and the NLDs of RAD51 protomers proximal to the nucleosome bind to the remaining nucleosomal DNA and histones. Mutations that affect nucleosome-binding residues of the RAD51 NLD decrease nucleosome binding, but barely affect DNA binding in vitro. Consistently, yeast Rad51 mutants with the corresponding mutations are substantially defective in DNA repair in vivo. These results reveal an unexpected function of the RAD51 NLD, and explain the mechanism by which RAD51 associates with nucleosomes, recognizes DSBs and forms the active filament in chromatin.
History
DepositionJun 6, 2023Deposition site: PDBJ / Processing site: PDBJ
Revision 1.0Mar 27, 2024Provider: repository / Type: Initial release
Revision 1.1Apr 3, 2024Group: Database references / Category: citation / citation_author
Item: _citation.pdbx_database_id_PubMed / _citation.title / _citation_author.identifier_ORCID
Revision 1.2Apr 17, 2024Group: Database references / Category: citation
Item: _citation.journal_volume / _citation.page_first / _citation.page_last
Revision 1.3Apr 24, 2024Group: Database references / Category: citation / Item: _citation.pdbx_database_id_PubMed / _citation.title
Revision 1.4May 8, 2024Group: Database references / Category: citation / Item: _citation.pdbx_database_id_PubMed / _citation.title

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Histone H3.1
B: Histone H4
C: Histone H2A type 1-B/E
D: Histone H2B type 1-J
E: Histone H3.1
F: Histone H4
G: Histone H2A type 1-B/E
H: Histone H2B type 1-J
I: DNA (156-MER)
J: DNA (153-MER)
K: DNA repair protein RAD51 homolog 1
L: DNA repair protein RAD51 homolog 1
M: DNA repair protein RAD51 homolog 1
N: DNA repair protein RAD51 homolog 1
O: DNA repair protein RAD51 homolog 1
P: DNA repair protein RAD51 homolog 1


Theoretical massNumber of molelcules
Total (without water)431,21916
Polymers431,21916
Non-polymers00
Water0
1


  • Idetical with deposited unit
  • defined by author&software
  • Evidence: electron microscopy, not applicable
TypeNameSymmetry operationNumber
identity operation1_555x,y,z1

-
Components

-
Protein , 5 types, 14 molecules AEBFCGDHKLMNOP

#1: Protein Histone H3.1 / Histone H3 / Histone H3/a / Histone H3/b / Histone H3/c / Histone H3/d / Histone H3/f / Histone H3/h / Histone ...Histone H3/a / Histone H3/b / Histone H3/c / Histone H3/d / Histone H3/f / Histone H3/h / Histone H3/i / Histone H3/j / Histone H3/k / Histone H3/l


Mass: 15719.445 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human)
Gene: H3C1, H3FA, HIST1H3A, H3C2, H3FL, HIST1H3B, H3C3, H3FC HIST1H3C, H3C4, H3FB, HIST1H3D, H3C6, H3FD, HIST1H3E, H3C7, H3FI, HIST1H3F, H3C8, H3FH, HIST1H3G, H3C10, H3FK, HIST1H3H, H3C11, H3FF, ...Gene: H3C1, H3FA, HIST1H3A, H3C2, H3FL, HIST1H3B, H3C3, H3FC HIST1H3C, H3C4, H3FB, HIST1H3D, H3C6, H3FD, HIST1H3E, H3C7, H3FI, HIST1H3F, H3C8, H3FH, HIST1H3G, H3C10, H3FK, HIST1H3H, H3C11, H3FF, HIST1H3I, H3C12, H3FJ, HIST1H3J
Production host: Escherichia coli (E. coli) / References: UniProt: P68431
#2: Protein Histone H4 /


Mass: 11676.703 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: H4C1 / Production host: Escherichia coli (E. coli) / References: UniProt: P62805
#3: Protein Histone H2A type 1-B/E / Histone H2A.2 / Histone H2A/a / Histone H2A/m


Mass: 14447.825 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: H2AC4, H2AFM, HIST1H2AB, H2AC8, H2AFA, HIST1H2AE / Production host: Escherichia coli (E. coli) / References: UniProt: P04908
#4: Protein Histone H2B type 1-J / Histone H2B.1 / Histone H2B.r / H2B/r


Mass: 14217.516 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: H2BC11, H2BFR, HIST1H2BJ / Production host: Escherichia coli (E. coli) / References: UniProt: P06899
#7: Protein
DNA repair protein RAD51 homolog 1 / / HsRAD51 / hRAD51 / RAD51 homolog A


Mass: 37291.398 Da / Num. of mol.: 6
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: RAD51, RAD51A, RECA / Production host: Escherichia coli (E. coli) / References: UniProt: Q06609

-
DNA chain , 2 types, 2 molecules IJ

#5: DNA chain DNA (156-MER)


Mass: 47976.699 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) synthetic construct (others) / Production host: Escherichia coli (E. coli)
#6: DNA chain DNA (153-MER)


Mass: 47371.070 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) synthetic construct (others) / Production host: Escherichia coli (E. coli)

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: RAD51-nucleosome complex / Type: COMPLEX / Entity ID: all / Source: RECOMBINANT
Source (natural)Organism: Homo sapiens (human)
Source (recombinant)Organism: Escherichia coli (E. coli)
Buffer solutionpH: 7.5
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELDBright-field microscopy / Nominal defocus max: 2500 nm / Nominal defocus min: 1000 nm
Image recordingElectron dose: 60.52 e/Å2 / Film or detector model: GATAN K3 BIOQUANTUM (6k x 4k)

-
Processing

CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
3D reconstructionResolution: 6.91 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 53864 / Symmetry type: POINT

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more