[English] 日本語
Yorodumi
- PDB-7x92: The SARS-CoV-2 receptor binding domain bound with the Fab fragmen... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 7x92
TitleThe SARS-CoV-2 receptor binding domain bound with the Fab fragment of a human neutralizing antibody Ab445
Components
  • Ab445 heavy chain
  • Ab445 light chain
  • Spike glycoproteinSpike protein
KeywordsVIRAL PROTEIN / severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike trimer / COVID-19 / human neutralizing antibody / RBD
Function / homology
Function and homology information


Maturation of spike protein / viral translation / Translation of Structural Proteins / Virion Assembly and Release / host cell surface / host extracellular space / suppression by virus of host tetherin activity / Induction of Cell-Cell Fusion / structural constituent of virion / entry receptor-mediated virion attachment to host cell ...Maturation of spike protein / viral translation / Translation of Structural Proteins / Virion Assembly and Release / host cell surface / host extracellular space / suppression by virus of host tetherin activity / Induction of Cell-Cell Fusion / structural constituent of virion / entry receptor-mediated virion attachment to host cell / host cell endoplasmic reticulum-Golgi intermediate compartment membrane / receptor-mediated endocytosis of virus by host cell / Attachment and Entry / membrane fusion / positive regulation of viral entry into host cell / receptor-mediated virion attachment to host cell / receptor ligand activity / host cell surface receptor binding / fusion of virus membrane with host plasma membrane / fusion of virus membrane with host endosome membrane / viral envelope / symbiont-mediated suppression of host type I interferon-mediated signaling pathway / virion attachment to host cell / SARS-CoV-2 activates/modulates innate and adaptive immune responses / host cell plasma membrane / virion membrane / membrane / identical protein binding / plasma membrane
Similarity search - Function
Spike (S) protein S1 subunit, receptor-binding domain, SARS-CoV-2 / Spike (S) protein S1 subunit, N-terminal domain, SARS-CoV-like / Betacoronavirus spike (S) glycoprotein S1 subunit N-terminal (NTD) domain profile. / Spike glycoprotein, N-terminal domain superfamily / Betacoronavirus spike (S) glycoprotein S1 subunit C-terminal (CTD) domain profile. / Spike glycoprotein, betacoronavirus / Spike (S) protein S1 subunit, receptor-binding domain, betacoronavirus / Spike S1 subunit, receptor binding domain superfamily, betacoronavirus / Betacoronavirus spike glycoprotein S1, receptor binding / Spike glycoprotein S1, N-terminal domain, betacoronavirus-like ...Spike (S) protein S1 subunit, receptor-binding domain, SARS-CoV-2 / Spike (S) protein S1 subunit, N-terminal domain, SARS-CoV-like / Betacoronavirus spike (S) glycoprotein S1 subunit N-terminal (NTD) domain profile. / Spike glycoprotein, N-terminal domain superfamily / Betacoronavirus spike (S) glycoprotein S1 subunit C-terminal (CTD) domain profile. / Spike glycoprotein, betacoronavirus / Spike (S) protein S1 subunit, receptor-binding domain, betacoronavirus / Spike S1 subunit, receptor binding domain superfamily, betacoronavirus / Betacoronavirus spike glycoprotein S1, receptor binding / Spike glycoprotein S1, N-terminal domain, betacoronavirus-like / Betacoronavirus-like spike glycoprotein S1, N-terminal / Spike glycoprotein S2, coronavirus, heptad repeat 1 / Spike glycoprotein S2, coronavirus, heptad repeat 2 / Coronavirus spike (S) glycoprotein S2 subunit heptad repeat 2 (HR2) region profile. / Coronavirus spike (S) glycoprotein S2 subunit heptad repeat 1 (HR1) region profile. / Spike glycoprotein S2 superfamily, coronavirus / Spike glycoprotein S2, coronavirus / Coronavirus spike glycoprotein S2 / Coronavirus spike glycoprotein S1, C-terminal / Coronavirus spike glycoprotein S1, C-terminal
Similarity search - Domain/homology
Biological speciesSevere acute respiratory syndrome coronavirus 2
Homo sapiens (human)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 4.1 Å
AuthorsKamada, K. / Shirouzu, M.
Funding support Japan, 1items
OrganizationGrant numberCountry
Japan Agency for Medical Research and Development (AMED)JP21ym0126022 Japan
CitationJournal: iScience / Year: 2022
Title: Potent SARS-CoV-2 neutralizing antibodies with therapeutic effects in two animal models.
Authors: Masaru Takeshita / Hidehiro Fukuyama / Katsuhiko Kamada / Takehisa Matsumoto / Chieko Makino-Okamura / Tomomi Uchikubo-Kamo / Yuri Tomabechi / Kazuharu Hanada / Saya Moriyama / Yoshimasa ...Authors: Masaru Takeshita / Hidehiro Fukuyama / Katsuhiko Kamada / Takehisa Matsumoto / Chieko Makino-Okamura / Tomomi Uchikubo-Kamo / Yuri Tomabechi / Kazuharu Hanada / Saya Moriyama / Yoshimasa Takahashi / Hirohito Ishigaki / Misako Nakayama / Cong Thanh Nguyen / Yoshinori Kitagawa / Yasushi Itoh / Masaki Imai / Tadashi Maemura / Yuri Furusawa / Hiroshi Ueki / Kiyoko Iwatsuki-Horimoto / Mutsumi Ito / Seiya Yamayoshi / Yoshihiro Kawaoka / Mikako Shirouzu / Makoto Ishii / Hideyuki Saya / Yasushi Kondo / Yuko Kaneko / Katsuya Suzuki / Koichi Fukunaga / Tsutomu Takeuchi /
Abstract: The use of therapeutic neutralizing antibodies against SARS-CoV-2 infection has been highly effective. However, there remain few practical antibodies against viruses that are acquiring mutations. In ...The use of therapeutic neutralizing antibodies against SARS-CoV-2 infection has been highly effective. However, there remain few practical antibodies against viruses that are acquiring mutations. In this study, we created 494 monoclonal antibodies from patients with COVID-19-convalescent, and identified antibodies that exhibited the comparable neutralizing ability to clinically used antibodies in the neutralization assay using pseudovirus and authentic virus including variants of concerns. These antibodies have different profiles against various mutations, which were confirmed by cell-based assay and cryo-electron microscopy. To prevent antibody-dependent enhancement, N297A modification was introduced. Our antibodies showed a reduction of lung viral RNAs by therapeutic administration in a hamster model. In addition, an antibody cocktail consisting of three antibodies was also administered therapeutically to a macaque model, which resulted in reduced viral titers of swabs and lungs and reduced lung tissue damage scores. These results showed that our antibodies have sufficient antiviral activity as therapeutic candidates.
History
DepositionMar 15, 2022Deposition site: PDBJ / Processing site: PDBJ
Revision 1.0Dec 7, 2022Provider: repository / Type: Initial release
Revision 1.1Dec 21, 2022Group: Database references / Category: citation / Item: _citation.journal_volume

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Spike glycoprotein
H: Ab445 heavy chain
L: Ab445 light chain
hetero molecules


Theoretical massNumber of molelcules
Total (without water)197,3284
Polymers196,9033
Non-polymers4241
Water0
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: electron microscopy
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

#1: Protein Spike glycoprotein / Spike protein / S glycoprotein / E2 / Peplomer protein


Mass: 141459.453 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Details: From aa1209, additional tags are added at the C-terminal, with Foldon sequence, TEV(tobacco etch virus) protease recognition and cleavage site, AviTag(peptide that allows for enzymatic ...Details: From aa1209, additional tags are added at the C-terminal, with Foldon sequence, TEV(tobacco etch virus) protease recognition and cleavage site, AviTag(peptide that allows for enzymatic biotinylation),and 6xHis affinity tag.
Source: (gene. exp.) Severe acute respiratory syndrome coronavirus 2
Gene: S, 2 / Production host: Homo sapiens (human) / References: UniProt: P0DTC2
#2: Antibody Ab445 heavy chain


Mass: 28964.598 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Production host: Homo sapiens (human)
#3: Antibody Ab445 light chain


Mass: 26479.400 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Production host: Homo sapiens (human)
#4: Polysaccharide 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose


Type: oligosaccharide / Mass: 424.401 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
DescriptorTypeProgram
DGlcpNAcb1-4DGlcpNAcb1-Glycam Condensed SequenceGMML 1.0
WURCS=2.0/1,2,1/[a2122h-1b_1-5_2*NCC/3=O]/1-1/a4-b1WURCSPDB2Glycan 1.1.0
[]{[(4+1)][b-D-GlcpNAc]{[(4+1)][b-D-GlcpNAc]{}}}LINUCSPDB-CARE
Has ligand of interestY

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: The SARS-CoV-2 spike protein bound with the Fab fragment of a human neutralizing antibody Ab445
Type: COMPLEX / Entity ID: #1-#3 / Source: RECOMBINANT
Molecular weightValue: 0.56 MDa / Experimental value: NO
Source (natural)Organism: Homo sapiens (human)
Source (recombinant)Organism: Homo sapiens (human)
Buffer solutionpH: 7.5
Buffer component
IDConc.NameFormulaBuffer-ID
120 mMTris hydrochlorideTris-HClTris1
2150 mMSodium chlorideNaClSodium chloride1
SpecimenConc.: 0.84 mg/ml / Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationInstrument: FEI VITROBOT MARK IV / Cryogen name: ETHANE / Humidity: 100 % / Chamber temperature: 277 K

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELDBright-field microscopy / Nominal magnification: 105000 X / Nominal defocus max: 2400 nm / Nominal defocus min: 800 nm
Specimen holderCryogen: NITROGEN / Specimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER / Temperature (max): 100 K / Temperature (min): 100 K
Image recordingElectron dose: 50 e/Å2 / Detector mode: COUNTING / Film or detector model: GATAN K3 BIOQUANTUM (6k x 4k)
Image scansMovie frames/image: 40

-
Processing

Software
NameVersionClassificationNB
phenix.real_space_refine1.19.2_4158refinement
PHENIX1.19.2_4158refinement
EM software
IDNameVersionCategory
1crYOLOparticle selection
2EPU2.9image acquisition
4CTFFIND4CTF correction
7Coot0.9.6model fitting
9PHENIX1.19.2-4158model refinement
10RELION3.1.2initial Euler assignment
11RELION3.1.2final Euler assignment
12RELION3.1.2classification
13RELION3.1.23D reconstruction
CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
3D reconstructionResolution: 4.1 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 64299 / Symmetry type: POINT
Atomic model buildingProtocol: AB INITIO MODEL / Space: REAL / Target criteria: Corelation coefficient
Atomic model buildingPDB-ID: 5CCK
RefinementCross valid method: NONE
Stereochemistry target values: GeoStd + Monomer Library + CDL v1.2
Displacement parametersBiso mean: 97.94 Å2
Refine LS restraints
Refine-IDTypeDev idealNumber
ELECTRON MICROSCOPYf_bond_d0.00513444
ELECTRON MICROSCOPYf_angle_d0.68154685
ELECTRON MICROSCOPYf_chiral_restr0.0603507
ELECTRON MICROSCOPYf_plane_restr0.0067607
ELECTRON MICROSCOPYf_dihedral_angle_d8.6586482

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more