[English] 日本語
Yorodumi
- PDB-7ktq: Nucleosome from a dimeric PRC2 bound to a nucleosome -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 7ktq
TitleNucleosome from a dimeric PRC2 bound to a nucleosome
Components
  • (601 DNA (167- ...) x 2
  • Histone H2A
  • Histone H2B
  • Histone H3
  • Histone H4
KeywordsGENE REGULATION/DNA / Chromatin / methyltransferase / nucleosome-modifying complex / GENE REGULATION / GENE REGULATION-DNA complex
Function / homology
Function and homology information


structural constituent of chromatin / nucleosome / nucleosome assembly / protein heterodimerization activity / DNA binding / nucleoplasm / nucleus
Similarity search - Function
Histone H2B signature. / Histone H2B / Histone H2B / Histone H2A conserved site / Histone H2A signature. / Histone H2A, C-terminal domain / C-terminus of histone H2A / Histone H2A / Histone 2A / Histone H4, conserved site ...Histone H2B signature. / Histone H2B / Histone H2B / Histone H2A conserved site / Histone H2A signature. / Histone H2A, C-terminal domain / C-terminus of histone H2A / Histone H2A / Histone 2A / Histone H4, conserved site / Histone H4 signature. / Histone H4 / Histone H4 / CENP-T/Histone H4, histone fold / Centromere kinetochore component CENP-T histone fold / TATA box binding protein associated factor / TATA box binding protein associated factor (TAF), histone-like fold domain / Histone H3 signature 1. / Histone H3 signature 2. / Histone H3 / Histone H3/CENP-A / Histone H2A/H2B/H3 / Core histone H2A/H2B/H3/H4 / Histone-fold
Similarity search - Domain/homology
DNA / DNA (> 10) / DNA (> 100) / Histone H2B / Histone H3 / Histone H2B 1.1 / Histone H4 / Histone H3.2 / Histone H2A
Similarity search - Component
Biological speciesXenopus laevis (African clawed frog)
Homo sapiens (human)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.3 Å
AuthorsGrau, D.J. / Armache, K.J.
Funding support United States, 1items
OrganizationGrant numberCountry
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)R01 GM115882 United States
CitationJournal: Nat Commun / Year: 2021
Title: Structures of monomeric and dimeric PRC2:EZH1 reveal flexible modules involved in chromatin compaction.
Authors: Daniel Grau / Yixiao Zhang / Chul-Hwan Lee / Marco Valencia-Sánchez / Jenny Zhang / Miao Wang / Marlene Holder / Vladimir Svetlov / Dongyan Tan / Evgeny Nudler / Danny Reinberg / Thomas ...Authors: Daniel Grau / Yixiao Zhang / Chul-Hwan Lee / Marco Valencia-Sánchez / Jenny Zhang / Miao Wang / Marlene Holder / Vladimir Svetlov / Dongyan Tan / Evgeny Nudler / Danny Reinberg / Thomas Walz / Karim-Jean Armache /
Abstract: Polycomb repressive complex 2 (PRC2) is a histone methyltransferase critical for maintaining gene silencing during eukaryotic development. In mammals, PRC2 activity is regulated in part by the ...Polycomb repressive complex 2 (PRC2) is a histone methyltransferase critical for maintaining gene silencing during eukaryotic development. In mammals, PRC2 activity is regulated in part by the selective incorporation of one of two paralogs of the catalytic subunit, EZH1 or EZH2. Each of these enzymes has specialized biological functions that may be partially explained by differences in the multivalent interactions they mediate with chromatin. Here, we present two cryo-EM structures of PRC2:EZH1, one as a monomer and a second one as a dimer bound to a nucleosome. When bound to nucleosome substrate, the PRC2:EZH1 dimer undergoes a dramatic conformational change. We demonstrate that mutation of a divergent EZH1/2 loop abrogates the nucleosome-binding and methyltransferase activities of PRC2:EZH1. Finally, we show that PRC2:EZH1 dimers are more effective than monomers at promoting chromatin compaction, and the divergent EZH1/2 loop is essential for this function, thereby tying together the methyltransferase, nucleosome-binding, and chromatin-compaction activities of PRC2:EZH1. We speculate that the conformational flexibility and the ability to dimerize enable PRC2 to act on the varied chromatin substrates it encounters in the cell.
History
DepositionNov 24, 2020Deposition site: RCSB / Processing site: RCSB
Revision 1.0Feb 3, 2021Provider: repository / Type: Initial release
Revision 1.1Feb 24, 2021Group: Database references / Category: citation / citation_author
Item: _citation.country / _citation.journal_abbrev ..._citation.country / _citation.journal_abbrev / _citation.journal_id_CSD / _citation.journal_id_ISSN / _citation.journal_volume / _citation.page_first / _citation.page_last / _citation.pdbx_database_id_DOI / _citation.pdbx_database_id_PubMed / _citation.title / _citation.year
Revision 1.2Mar 6, 2024Group: Data collection / Database references / Category: chem_comp_atom / chem_comp_bond / database_2
Item: _database_2.pdbx_DOI / _database_2.pdbx_database_accession

-
Structure visualization

Movie
  • Deposited structure unit
  • Imaged by Jmol
  • Download
  • Superimposition on EM map
  • EMDB-23026
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Histone H3
B: Histone H4
C: Histone H2A
D: Histone H2B
E: Histone H3
F: Histone H4
G: Histone H2A
H: Histone H2B
I: 601 DNA (167-MER)
J: 601 DNA (167-MER)


Theoretical massNumber of molelcules
Total (without water)188,39610
Polymers188,39610
Non-polymers00
Water0
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: native gel electrophoresis, gel filtration
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

-
Protein , 4 types, 8 molecules AEBFCGDH

#1: Protein Histone H3 /


Mass: 11631.616 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Xenopus laevis (African clawed frog) / Gene: XELAEV_18002543mg / Production host: Escherichia coli (E. coli) / References: UniProt: A0A310TTQ1, UniProt: P84233*PLUS
#2: Protein Histone H4 /


Mass: 8910.394 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Xenopus laevis (African clawed frog) / Production host: Escherichia coli (E. coli) / References: UniProt: P62799
#3: Protein Histone H2A /


Mass: 11494.393 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Xenopus laevis (African clawed frog)
Gene: h2ac14.L, h2ac14, hist1h2aj, LOC494591, XELAEV_18003602mg
Production host: Escherichia coli (E. coli) / References: UniProt: Q6AZJ8
#4: Protein Histone H2B /


Mass: 10607.212 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Xenopus laevis (African clawed frog) / Gene: XELAEV_18032685mg / Production host: Escherichia coli (E. coli) / References: UniProt: A0A1L8FQA5, UniProt: P02281*PLUS

-
601 DNA (167- ... , 2 types, 2 molecules IJ

#5: DNA chain 601 DNA (167-MER)


Mass: 51318.691 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Production host: Escherichia coli (E. coli)
#6: DNA chain 601 DNA (167-MER)


Mass: 51789.973 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Production host: Escherichia coli (E. coli)

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: Nucleosome from a PRC2:EZH1 dimer bound to a nucleosome
Type: COMPLEX / Entity ID: #1-#4 / Source: RECOMBINANT
Molecular weightValue: .220 MDa / Experimental value: NO
Source (natural)Organism: Xenopus laevis (African clawed frog)
Source (recombinant)Organism: Escherichia coli (E. coli)
Buffer solutionpH: 7.9
Buffer component
IDConc.NameFormulaBuffer-ID
120 mMHEPES1
250 mMsodium chlorideNaClSodium chloride1
31 mMmagnesium chlorideMgCl21
41 mMdithiothreitol1
SpecimenConc.: 0.12 mg/ml / Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: SPOT SCAN
Electron lensMode: BRIGHT FIELDBright-field microscopy
Image recordingElectron dose: 56.7 e/Å2 / Film or detector model: GATAN K3 (6k x 4k)

-
Processing

EM softwareName: cryoSPARC / Category: CTF correction
CTF correctionDetails: Patch CTF correction / Type: PHASE FLIPPING AND AMPLITUDE CORRECTION
Particle selectionNum. of particles selected: 3410000 / Details: Template based picking
3D reconstructionResolution: 3.3 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 56616 / Symmetry type: POINT

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more