[English] 日本語
Yorodumi Papers
- Database of articles cited by EMDB/PDB/SASBDB data -

+
Search query

Keywords
Structure methods
Author
Journal
IF

-
Structure paper

TitleSARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape.
Journal, issue, pagesNature, Vol. 597, Issue 7874, Page 97-9102, Year 2021
Publish dateJul 14, 2021
AuthorsTyler N Starr / Nadine Czudnochowski / Zhuoming Liu / Fabrizia Zatta / Young-Jun Park / Amin Addetia / Dora Pinto / Martina Beltramello / Patrick Hernandez / Allison J Greaney / Roberta Marzi / William G Glass / Ivy Zhang / Adam S Dingens / John E Bowen / M Alejandra Tortorici / Alexandra C Walls / Jason A Wojcechowskyj / Anna De Marco / Laura E Rosen / Jiayi Zhou / Martin Montiel-Ruiz / Hannah Kaiser / Josh R Dillen / Heather Tucker / Jessica Bassi / Chiara Silacci-Fregni / Michael P Housley / Julia di Iulio / Gloria Lombardo / Maria Agostini / Nicole Sprugasci / Katja Culap / Stefano Jaconi / Marcel Meury / Exequiel Dellota / Rana Abdelnabi / Shi-Yan Caroline Foo / Elisabetta Cameroni / Spencer Stumpf / Tristan I Croll / Jay C Nix / Colin Havenar-Daughton / Luca Piccoli / Fabio Benigni / Johan Neyts / Amalio Telenti / Florian A Lempp / Matteo S Pizzuto / John D Chodera / Christy M Hebner / Herbert W Virgin / Sean P J Whelan / David Veesler / Davide Corti / Jesse D Bloom / Gyorgy Snell /
PubMed AbstractAn ideal therapeutic anti-SARS-CoV-2 antibody would resist viral escape, have activity against diverse sarbecoviruses, and be highly protective through viral neutralization and effector functions. ...An ideal therapeutic anti-SARS-CoV-2 antibody would resist viral escape, have activity against diverse sarbecoviruses, and be highly protective through viral neutralization and effector functions. Understanding how these properties relate to each other and vary across epitopes would aid the development of therapeutic antibodies and guide vaccine design. Here we comprehensively characterize escape, breadth and potency across a panel of SARS-CoV-2 antibodies targeting the receptor-binding domain (RBD). Despite a trade-off between in vitro neutralization potency and breadth of sarbecovirus binding, we identify neutralizing antibodies with exceptional sarbecovirus breadth and a corresponding resistance to SARS-CoV-2 escape. One of these antibodies, S2H97, binds with high affinity across all sarbecovirus clades to a cryptic epitope and prophylactically protects hamsters from viral challenge. Antibodies that target the angiotensin-converting enzyme 2 (ACE2) receptor-binding motif (RBM) typically have poor breadth and are readily escaped by mutations despite high neutralization potency. Nevertheless, we also characterize a potent RBM antibody (S2E12) with breadth across sarbecoviruses related to SARS-CoV-2 and a high barrier to viral escape. These data highlight principles underlying variation in escape, breadth and potency among antibodies that target the RBD, and identify epitopes and features to prioritize for therapeutic development against the current and potential future pandemics.
External linksNature / PubMed:34261126 / PubMed Central
MethodsEM (single particle) / X-ray diffraction
Resolution1.83 - 3.95 Å
Structure data

EMDB-24299, PDB-7r7n:
SARS-CoV-2 spike in complex with the S2D106 neutralizing antibody Fab fragment (local refinement of the RBD and S2D106)
Method: EM (single particle) / Resolution: 3.95 Å

EMDB-24300:
SARS-CoV-2 spike in complex with the S2D106 neutralizing antibody Fab fragment
Method: EM (single particle) / Resolution: 3.67 Å

EMDB-24301:
SARS-CoV-2 spike glycoprotein ectodomain in complex with the S2H97 neutralizing antibody Fab fragment
Method: EM (single particle) / Resolution: 3.64 Å

PDB-7m7w:
Antibodies to the SARS-CoV-2 receptor-binding domain that maximize breadth and resistance to viral escape
Method: X-RAY DIFFRACTION / Resolution: 2.65 Å

PDB-7r6w:
SARS-CoV-2 spike receptor-binding domain (RBD) in complex with S2X35 Fab and S309 Fab
Method: X-RAY DIFFRACTION / Resolution: 1.83 Å

PDB-7r6x:
SARS-CoV-2 spike receptor-binding domain (RBD) in complex with S2E12 Fab, S309 Fab, and S304 Fab
Method: X-RAY DIFFRACTION / Resolution: 2.95 Å

Chemicals

ChemComp-NAG:
2-acetamido-2-deoxy-beta-D-glucopyranose / N-Acetylglucosamine

ChemComp-HOH:
WATER / Water

ChemComp-SO4:
SULFATE ION / Sulfate

ChemComp-GOL:
GLYCEROL / Glycerol

ChemComp-CL:
Unknown entry / Chloride

ChemComp-POL:
N-PROPANOL / Propan-1-ol

Source
  • severe acute respiratory syndrome coronavirus 2
  • homo sapiens (human)
KeywordsVIRAL PROTEIN/IMMUNE SYSTEM / COVID-19 / SARS-CoV-2 / neutralizing monoclonal antibody / VIRAL PROTEIN-IMMUNE SYSTEM complex / spike glycoprotein / fusion protein / neutralizing antibodies / Structural Genomics / Seattle Structural Genomics Center for Infectious Disease / SSGCID / Inhibitor / VIRAL PROTEIN

+
About Yorodumi Papers

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi Papers

Database of articles cited by EMDB/PDB/SASBDB data

  • Database of articles cited by EMDB, PDB, and SASBDB entries
  • Using PubMed data

Related info.:EMDB / PDB / SASBDB / Yorodumi / EMN Papers / Changes in new EM Navigator and Yorodumi

Read more